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Abstract

This paper presents a new boundary integral formulation for a plane elastic body containing an arbitrary
number of cracks and holes[ The body is assumed to be linear elastic and isotropic\ but can be of either
_nite or in_nite extend[ The cracks inside the body can be either internal or edge crack\ and either straight
or curvilinear^ and the holes can be of arbitrary number and shape[ Starting from Somigliana formula\ we
obtain a system of boundary integral equations by applying integration by parts[ In complex variables
notation\ the stress and displacement components can be expressed in terms of Muskhelishvili|s analytic
functions\ which are in turn written as functions of boundary traction and displacement data in the form of
Cauchy integral[ The complex boundary integral equations for traction involve only singularity of order 0:r\
where r is the distance measured from the singular boundary points\ and no hypersingular terms appear[
This new boundary integral formulation provides an e}ective basis in solving problems both analytically
and numerically[ To illustrate the validity of our new integral formulation\ a number of classical problems
are re!examined analytically using the present formulation] "i# an in_nite body containing a circular hole
subject to far _eld biaxial stress\ internal pressure\ and a point force on the hole|s boundary respectively^
and "ii# an in_nite body containing a circular!arc crack under remote uniaxial tension[ To illustrate the
applicability of the present formulation for boundary element method analysis\ two numerical examples for
the interactions between two collinear cracks are considered and the results agree well with the existing
solutions by Chandra et al[ "0884# for the case of _nite rectangular plates and with Isida "cited in p[ 084 of
Murakami\ 0876# for the case of in_nite plates[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

The idea of using boundary integral formulation probably originates from its applications in
potential theory "e[g[ Kellogg\ 0842#[ The _rst boundary integral formulation for three!dimensional
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elasticity was proposed by Kupradze "0842# "see also Kupradze\ 0854# and was later derived
independently by Kinoshita and Mura "0845# and Mikhlin "0854#[ This formulation is normally
called boundary integral equation "BIE# method\ and it is founded on the basis of Green|s formula[
In essence\ it is a limiting case of the Somigliana|s identity\ which expresses the displacement _eld
inside a body in terms of the surface traction and displacements when the point at which the
displacement is evaluated approaches the boundary of the body "e[g[ Brebbia et al[\ 0873#[

Due to the rapid development of computers in the last few decades\ numerical scheme "normally
referred to as the boundary element method or BEM# has been developed in solving the boundary
integral equations in elasticity "e[g[ Rizzo\ 0856^ Cruse\ 0858^ Lacht and Watson\ 0865^ Brebbia et
al[\ 0873#[ However\ when the boundary element method is applied directly to crack problems\ the
geometrical overlapping of the upper and lower crack surfaces lead to an indeterminacy of the
equations[ Di}erent approaches have been proposed to overcome this di.culty\ such as] the
Greens| function method\ which requires the use of a Green|s function for the particular crack
problem "e[g[ Snyder and Cruse\ 0864^ Ang and Clements\ 0875\ 0876^ Ang\ 0875\ 0876\ 0889#^ the
displacement discontinuity method\ which uses a point displacement Green|s function instead of
the point force Green|s function "e[g[ Crouch\ 0865^ Crouch and Star_eld\ 0872^ Shou and Crouch\
0884#^ the subregional or multidomain method\ which cuts the body into domains by introducing
an arti_cial cut from the crack line to the external boundary "e[g[ Blanford et al[\ 0880#^ the dual
or hypersingular boundary element method "e[g[ Portela et al[\ 0881^ Saez et al[\ 0884^ Chen and
Chen\ 0884#^ the body force method "e[g[ Lee and Keer\ 0875#^ and the dislocation density method\
which reduces the singularity by one order using integration by parts and expressing the unknowns
as dislocation densities "e[g[ Bui\ 0866^ Weaver\ 0866^ Wang\ 0889\ 0882\ 0884^ Wang and Tang\
0877^ Zhang and Gudmundson\ 0877^ Chang and Mear\ 0884#[ The method of boundary integral
equations and the boundary element method for crack problems has been and remains an area of
active research "e[g[ Aliabadi et al[\ 0878^ Aliabadi and Brebbia\ 0882^ Ioakimidis\ 0871\ 0872\
0874^ Lavit\ 0883^ Martin and Rizzo\ 0878^ Sladek and Sladek\ 0871\ 0889^ Pan and Amadei\ 0885^
Stephan\ 0875^ Wang and Chen\ 0882^ Jiang et al[\ 0885^ Wendland and Stephen\ 0889^ Hong and
Chen\ 0877^ Zang\ 0889^ Takakuda et al[\ 0874^ Nishimura and Kobayashi\ 0877^ Chen and
Hasebe\ 0885#[

When a solid contains both cracks and holes\ the interactions among them may be signi_cant
as the distance between a crack!tip and the neighbouring holes and cracks decreases[ For problems
with straight cracks and regularly!shaped holes\ the complex variable techniques by Muskhelishvili
"0864# can be used to estimate the stress intensity factor KI at the crack!tip due to interactions[
For examples\ the e}ect of an elliptical and a square hole on the KI of a straight crack have been
evaluated using Muskhelishvili|s "0864# method by Tang and Wang "0875# and by Wang and Tang
"0877#\ respectively[ However\ when the cracks are curvilinear and:or the holes are irregular in
shape\ numerical method must inevitably be employed[ To our best knowledge\ boundary integral
formulation for plane elastic solids containing both cracks and holes has not\ however\ been
derived such that it can be applied to elastic bodies of either _nite or in_nite extend\ containing
either internal or edge cracks "these cracks can be either straight or curvilinear#\ and the holes
inside the body can be of arbitrary shape[

Therefore\ the main purpose of this study is to derive a system of boundary integral equations\
which is useful in obtaining analytical solutions for simple problems and can also provide a base
for accurate and e.cient implementation of boundary element method[ The formulation should
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also be applicable to a wide class of interaction problems between two!dimensional cracks and
holes[ In addition\ we also expect that our boundary integral formulation bears close resemblance
with the well!established analytical techniques\ such as the complex variable method by Mus!
khelishvili "0864#[

With all these requirements in mind\ we _rst integrate the Somigliana formula by parts to yield
a traction boundary integral equation in terms of boundary traction and displacement densities[
The complex representation of stresses and displacements are then derived in terms of two analytic
functions "F and C#\ and both of them involve Cauchy integral of a boundary complex function
H"t#\ which is a complex combination of traction and displacement density on the boundary points
t[ Since the displacement density is involved in the boundary complex function\ a single!valued
condition is derived for H"t#[ The physical meaning of H"t# and the uniqueness of our boundary
integral equation are also discussed[ Our boundary integral equation is then specialized to cases
of in_nite body subject to far _eld stresses[ To illustrate the correctness of our proposed formu!
lation\ the stress concentration at a circular opening in an in_nite body subject to various kinds of
loadings is considered[ The problem of a circular!arc crack subject to far _eld uniaxial tension is
re!examined^ and\ as expected\ our solution is the same as those given by Tada et al[ "0874# based
upon Muskhelishvili "0864# method[

More importantly\ our boundary integration formulation is motivated by its possible application
to an e.cient boundary element analysis[ In this regard\ an attractive feature for the present
formulation is that our boundary integral formulation for traction is obtained by integration by
parts on the Somigliana identity\ and therefore\ involves only singularity of order 0:r\ where r is
the distance measured from crack tip[ That is\ no hypersingular term "i[e[ 0:rn terms with n × 0#
appears in the boundary integral equation[ As shown by Wang and Chau "0886#\ the present
boundary integral formulation provides a _rm base for the analysis of interaction between cracks
and holes\ in which cracks can\ in general\ be curvilinear and the hole can also be of arbitrary
shape[ Although the BEM formulation is out of the scope of the present paper\ two numerical
examples will be considered to illustrate the numerical applicability of the present boundary
integral formulation to more complicated problems[

1[ A new boundary integral formulation

In this section\ we derive a new formulation for the boundary integral equations for two!
dimensional bodies containing an arbitrary number of cracks and holes of arbitrary shape[ As
shown in Fig[ 0\ we consider a two!dimensional linear elastic body under plane condition containing
m holes and n cracks[ The body is multi!connected as its surface can be divided into two subsets]
the ordinary boundary set S � S9¦S0¦= = =¦Sm^ and the crack boundary set G � G0¦G1¦= = =¦Gn[
The outer boundary of the body is denoted by S9 which can either be of _nite length "i[e[ a _nite
body# or of in_nite extend "i[e[ an in_nite body#[

We _rst apply the following Somigliana formula\ which expresses the displacement _eld at an
interior point x in terms of the traction and displacement data on the boundary points y ði[e[
tj"y# � sijni and uj"y#Ł\ for a body containing both holes and cracks as shown in Fig[ 0 "e[g[ Cruse\
0877#]
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Fig[ 0[ A _nite isotropic elastic domain containing n cracks and m holes with the outer boundary S9[

ui"x# � gS

Uij"x\ y#tj"y# ds"y#−gS

Tij"x\ y#uj"y# ds"y#

¦gG
Uij"x\ y#Stj"y# ds"y#−gG

Tij"x\ y#Duj"y# ds"y# "0#

where s"y# is the arc length along the boundaries\ either along S or G\ and i\ j � 0\ 1^
Stj"y# � tj"y¦#¦tj"y−# is the sum of the tractions acting on the upper and lower crack surfaces^
and Duj"y# � uj"y¦#−uj"y−# is the di}erence of the displacements between the upper and lower
crack surfaces[ The fundamental solutions Uij"x\ y# and Tij"x\ y# are the j!th displacement and
traction at boundary point y caused by a unit point force along the i!th direction at a source point
x^ and they can be expressed as follows "e[g[ Brebbia 0873^ Brebbia and Dominguez\ 0881^ Danson\
0872#]

Uij"x\ y# �
0

1pG"k¦0# $kdij ln 0
0
r1¦r\ir\j% "1#

Tij � −Dijk"x\ y#nk"y# "2#

Dijk �
0

p"k¦0#r $
0
1
"k−0#"dijr\k¦dikr\j−djkr\i#¦1r\ir\jr\k% "3#

where r � =y−x= � ð"y1−x1#1¦"y0−x0#1Ł0:1 is the distance between points x and y^ G is the shear
modulus of the body^ the partial derivative r\j denotes "1r#:"1yj#^ nk"y# is the unit normal along the
boundary on either S or G^ k equals 2−3n for plane strain and "2−n#:"0¦n# for plane stress\
where n is the Poisson|s ratio[
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Since the displacement _eld given in "0# is valid at all internal points of the linear elastic body\
thus\ Hooke|s law can be applied to obtain the stress _eld inside the body[ In particular\ we _rst
di}erentiate ui with respect to xk to give

ui\k"x# � gS

1Uij"x\ y#
1xk

tj"y# ds"y#−gS

1Tij"x\ y#
1xk

uj"y# ds"y#

¦gG

1Uij"x\ y#
1xk

Stj"y# ds"y#−gG

1Tij"x\ y#
1xk

Duj"y# ds"y# "4#

The displacement gradient terms in the kernels can be found by di}erentiating "1# to yield]

1Uij

1xk

� −
1Uij

1yk

� −Uij\k � −
0

1pG"k¦0# $−
k

r
dijr\k¦r\ikr\j¦r\ir\jk% "5#

The _rst of "5# can easily be shown by using the fact that 1r:1xj � −1r:1yj � −r\j[ Unless otherwise
stated\ all subsequent " #\j denotes the partial derivative with respect to yj not xj[ Using the de_nition
of r given after "3#\ it is straightforward to show that

r\i �
yi−xi

r
\ r\ik �

0
r
"dik−r\ir\k# "6#

Substitution of "6# into "5# gives

1Uij"x\ y#
1xk

�
0

1pG"k¦0# $
k

r
dijr\k¦

1
r
r\ir\jr\k−

0
r
"dikr\j¦djkr\i#% "7#

For the traction gradient terms in the kernels of "4#\ we can di}erentiate Tij given in "2# with
respect to x0 to give

1Tij"x\ y#
1x0

� −nk"y#
1Dijk"x\ y#

1x0

� nk"y#Dijk\0"x\ y# "8#

where\ as de_ned before\ the " #\j means 1" #:1yj which should not be confused with the partial
derivative with respect to xj[ On the other hand\ the fundamental solution Dijk should satisfy the
equilibrium equation\ therefore\ we have Dijk\k � 9 or Dij0\0¦Dij1\1 � 9 for y � x[ Using this
information\ "8# can be expressed as]

1Tij"x\ y#
1x0

� −$−n1"y#
1

1y0

¦n0"y#
1

1y1%Dij1"x\ y# � −
1Dij1"x\ y#

1s"y#
"09#

The second of "09# is resulted from the following identity] 1f:1s � n0"1f:1y1#−n1"1f:1y0#\ which is
obvious from the de_nition of n0 and n1 given in Fig[ 1[ Similarly\ we can also show that

1Tij"x\ y#
1x1

�
1Dij0"x\ y#

1s"y#
"00#

The results for "09#Ð"00# can be written in a more compact form as]



K[T[ Chau\ Y[B[ Wan` : International Journal of Solids and Structures 25 "0888# 1930Ð19631935

Fig[ 1[ A local orthogonal curvilinear system n−s along the contour S¦G[ Any quantity on the left side of the contour
line is taken as {¦| and those on the right is taken as {−|[ At any boundary point on S¦G with normal n\ the angle a

is taken as the angle of the s!direction measured from the x0 axis[

1Tij"x\ y#
1xk

� −ekb

1Dijb"x\ y#
1s"y#

"01#

where eij � d0id1j−d1id0j is the 1!D permutation tensor "i[e[ e00 � e11 � 9\ e01 � −e10 � 0#[
Substitution of "7# and "01# into "4#\ then inserting the resulting expression into the following

Hooke|s law for 1!D isotropic solids

sij"x# � ldijum\m"x#¦Gðui\j"x#¦uj\i"x#Ł "02#

where l � G"2−k#:"k−0#\ gives an integral formulation for the stress]

sij"x# � gS

Dkij"x\ y#tk"y# ds"y#¦gS

1Wkij"x\ y#
1s"y#

uk"y# ds"y#

¦gG
Dkij"x\ y#Stk"y# ds"y#¦gG

1Wkij"x\ y#
1s"y#

Duk"y# ds"y# "03#

where

Wkij � ldijembDmkb"x\ y#¦GðejbDikb"x\ y#¦eibDjkb"x\ y#Ł "04#

Integrating "03# by parts and noting that ðWkijukŁ vanishes around a closed boundary Sj "where
j � 0\ 1\ [ [ [\ m# since it is a single!value function and ðWkijDukŁ vanishes on both tips of any crack
Gj "where j � 0\ 1\ [ [ [\ n#^ thus\ we _nally obtain

sij"x# � gS

Dkij"x\ y#tk"y# ds"y#−gS

Wkij"x\ y#
1uk"y#
1s"y#

ds"y#

¦gG
Dkij"x\ y#Stk"y# ds"y#−gG

Wkij"x\ y#
1Duk"y#
1s"y#

ds"y# "05#

In addition\ it is not di.cult to show that this procedure of integration by parts also applies to
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Fig[ 2[ A sketch for an edge crack Gj emanating from a hole Si[ The upper and lower points on the crack surfaces at the
hole|s boundary are denoted by a¦

j and a−
j \ respectively\ and bj is the tip of the edge crack Gj[

edge cracks emanate from any hole or from the outer boundary S9 "such as G1 emanates from S0

and Gn from S9 shown in Fig[ 0#\ and that "05# remains valid for bodies containing edge cracks[
To see this\ we consider an edge crack Gh emanates from an ordinary boundary Sl shown in Fig[
2[ Applying integration by parts to "03# leads to the following quantities being evaluated on the
boundary]

ðWkij"x\ y#uk"y#ŁSl
¦ðWkij"x\ y#Duk"y#ŁGh

� Wkij"x\ a¦#uk"a¦#−Wkij"x\ a−#uk"a−#

¦Wkij"x\ b#Duk"b#−Wkij"x\ a#Duk"a# � 9 "06#

where a¦ and a− are the upper and lower points on crack surface at the hole|s boundary\ and b is
the tip of the edge crack[ The last of "06# is obtained by virtue of the fact that Duk"b# 0 9\
Duk"a# � uk"a¦#−uk"a−# and Wkij is the same on both the lower and upper crack surfaces[ There!
fore\ "05# remains valid for edge crack problems[

For any interior point x\ we have r � =y−x= � 9^ thus\ the integrals in "05# are regular "i[e[ no
singularity#[ Consider now the limit that x tends to a smooth boundary point x9 on either S or G[
For such a limiting process\ we decompose the ordinary boundary S or the crack boundary G into
S−So and So or G−Go and Go\ depending on where the boundary point x9 is\ in which So 0 "y=y $ S\
=y−x9= ³ o and x9 $ S# or Go 0 "y=y $ G\ =y−x9= ³ o and x9 $ G#[ Note that this approach is di}erent
from the customary approach that the boundary "either S or G# around the boundary point x9 is
deformed by incorporating a semicircular region with centre at x9[ If the source point x approaches
an ordinary boundary "or a crack boundary#\ the integral on the boundary S−So¦G "or
S¦G−Go# should be interpreted in the Cauchy principal value sense[ Whereas the integral on the
boundary So can be shown to be]

lim
o:9

lim
x:x9 $nj"x9#tk"x9# gSo

Dkij"x\ y# ds"y#−nj"x9#
1uk"x9#
1s"x9# gSo

Wkij"x\ y# ds"y#%�
0
1

ti"x9# "07#

where nj"x9# denotes the j!th component of the unit outward normal to the boundary S[ Note that
the mean value theorem for integrals have been applied such that tk and 1uk:1s are taken out of
the integration[ The full details of the integration involved in obtaining the right!hand side of "07#
is quite straightforward\ though tedious^ thus\ the details are omitted here[ In short\ we _nd that
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the _rst term on the left!hand side contributes to 0
1
ti"x9# appearing on the right!hand side and the

second term on the left!hand side is identically zero[ Similarly\ if x approaches a crack boundary\
the integral on Go can be shown to be

lim
o:9

lim
x : x2

9 $nj"x2
9 #Stk"x9# gGo

Dkij"x\ y# ds"y#−nj"x2
9 #

1Duk"x9#
1s"x9# gGo

Wkij"x\ y# ds"y#%
�

0
1

Sti"x9# "08#

where nj"x¦
9 # and nj"x−

9 # are the j!th component of the unit outward normal to the upper and
lower crack surfaces\ respectively[

In view of "07# and "08#\ the integral equation for the traction at an ordinary boundary point
x9 on S becomes

0
1

ti"x9# � nj"x9# gS

Dkij"x9\ y#tk"y# ds"y#−nj"x9# gS

Wkij"x9\ y#
1uk"y#
1s"y#

ds"y#

¦nj"x9# gG
Dkij"x9\ y#Stk"y# ds"y#−nj"x9# gG

Wkij"x9\ y#
1Duk"y#
1s"y#

ds"y# "19#

where i � 0\ 1^ and\ similarly\ when x9 is on the crack surface G\ we have

ti"x2
9 # � nj"x2

9 # gS

Dkij"x9\ y#tk"y# ds"y#−nj"x2
9 # gS

Wkij"x9\ y#
1uk"y#
1s"y#

ds"y#

¦nj"x2
9 # gG

Dkij"x9\ y#Stk"y# ds"y#−nj"x2
9 # gG

Wkij"x9\ y#
1Duk"y#
1s"y#

ds"y#¦
0
1

Sti"x9# "10#

where\ again\ i � 0\ 1[ Although there seems four expressions in "10#\ only two of them are actually
independent[ In particular\ we can set nj"x9# 0 nj"x¦

9 # � −nj"x−
9 # for any x9 on G such that the

upper and lower crack tractions in "10# can be combined to yield]

0
1

ðti"x¦
9 #−ti"x−

9 #Ł � nj"x9# gS

Dkij"x9\ y#tk"y# ds"y#−nj"x9# gS

Wkij"x9\ y#
1uk"y#
1s"y#

ds"y#

¦nj"x9# gG
Dkij"x9\ y#Stk"y# ds"y#−nj"x9# gG

Wkij"x9\ y#
1Duk"y#
1s"y#

ds"y# "11#

where i � 0\ 1[ Equations "19# and "11# provide a set of four integral equations for the tractions
on both the hole and crack surface[ Since for stress boundary value problems the traction should
be prescribed on the boundary\ only four of the eight independent variables in "19# and "11# are
unknowns\ i[e[ 1uk:1s are unknowns on hole boundary and 1Duk:1s are unknowns on crack surface
"where k � 0\ 1#[ For displacement boundary value problems or mixed boundary value problems\
we will discuss them separately in our later publications[

An attractive feature of the present formulation is that all the crack boundary conditions "both
upper and lower ones# have been incorporated into "11#^ thus\ there is no need to discretize the
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upper and lower crack surfaces separately when boundary element method is applied[ In addition\
only stress singularity in the order of 0:r appears in the integrand and no hypersingularity "i[e[
0:r1# is involved[

To further simplify our boundary integral eqns "19# and "11#\ a complex representation will be
introduced next[

2[ Integral equations in complex variable notation

The integral formulation given in the previous section can signi_cantly be simpli_ed by using
complex representation[ More speci_cally\ we introduce two complex variables t � y0¦iy1 and
z � x0¦ix1 in replacement of y and x\ respectively\ where i �"−0#0:1 ðrecalling that x �"x0\ x1#
and y �"y0\ y1#Ł[ It is obvious to show that r1 �"t−z#"t¹−z¹# and

0
r
r\0 �

0
1 $

0
t−z

¦
0

t¹−z¹%\
0
r
r\1 �

0
1i $

0
t¹−z¹

−
0

t−z% "12#

To express the stress components given in "05# in terms of complex representation\ we _rst note
the following identities\ which can be deduced directly from the de_nitions of Dkij and Wkij together
with "12#]

"Dk00¦Dk11#tk �
1

p"k¦0#
r\ktk
r

�
0

p"0¦k# $
p"t#

"t−z#
¦

p¹ "t#
"t¹−z¹#% "13#

"Wk00¦Wk11#
1uk

1s
�

1Gi
p"0¦k# $

U"t#
t−z

−
UÞ"t#
t¹−z¹% "14#

"Dk11−Dk00¦1iDk01#tk �
−0

p"k¦0# $
kp¹ "t#
t−z

¦
t¹−z¹

"t−z#1
p"t#% "15#

"Wk11−Wk00¦1iWk01#
1uk

1s
� −

1Gi
p"k¦0# 0

t¹−z¹
t−z1 0

U"t#
t−z

¦
UÞ"t#
t¹−z¹1 "16#

where p"t# � t0"t#¦it1"t# is the complex traction and U"t# � 1u0:1s¦i 1u1:1s is the complex dis!
placement density on S[ In addition\ UÞ"t# represents the complex conjugate of U"t#\ and similar
de_nitions are also applied to other complex functions[ Expressions similar to "13#Ð"16# can also
be obtained for quantities on G[

Applying the results "13#Ð"16# to "05#\ the stress components can be expressed as]

s00¦s11 � Re $
1
p gS¦G

F"t# ds"t#
t−z % "17#

s11−s00¦1is01 �
0
p gS¦G $

FÞ"t#−PÞ"t#
t−z

−
t¹−z¹

"t−z#1
F"t#% ds"t# "18#

where
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F"t# �
0

k¦0
ðP"t#−iw"t#Ł "29#

In which\ the following complex traction P"t# and displacement density w"t# are introduced]

w"t# �

F

G

j

J

G

f

1G
1

1s"t#
ðu0"t#¦iu1"t#Ł for t on S

1G
1

1s"t#
ðDu0"t#¦iDu1"t#Ł for t on G

"20#

P"t# � 6
t0"t#¦it1"t# for t on S

St0"t#¦iSt1"t# for t on G
"21#

Alternatively\ if we de_ne the following analytic functions F"z# and C"z#]

F"z# �
0
1p gS¦G

F"t# ds"t#
t−z

"22#

C"z# �
0
1p gS¦G 6

0
t−z

ðFÞ"t#−PÞ"t#Ł−
t¹F"t#

"t−z#17 ds"t# "23#

where F"t# and P"t# are de_ned in "29# and "21#\ respectively\ then the stress boundary integral
formulation given in "17#Ð"18# can now be interpreted in terms of Muskhelishvili|s "0864# for!
mulation as]

s00¦s11 � 1ðF"z#¦FÞ"z#Ł "24#

s11−s00¦1is01 � 1ðz¹F?"z#¦C"z#Ł "25#

To express the boundary integrals of "22# and "23# in terms of Cauchy integrals\ we further
introduce the following complex boundary function H"t#]

H"t# � iF"t# e−ia"t# "26#

where t is a boundary point on S¦G[ Consequently\ "22# and "23# can be rewritten in terms of
Cauchy integrals as]

F"z# �
0

1pi gS¦G

H"t# dt
t−z

"27#

C"z# � −
0

1pi gS¦G $
HÞ "t#−q¹ "t#

t−z
e−1ia"t#¦

t¹H"t#

"t−z#1% dt "28#

where

q"t# � iP"t# e−ia"t# "39#

With the introduction of complex variable notation\ the boundary integral equations for tractions
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given in "19# and "11# can now be simpli_ed signi_cantly[ We _rst note that after a rather lengthy
manipulation the following identities can be established]

nj"Dk0j¦iDk1j#tk �
i

1p"k¦0# 6$k
p"t#
t¹−z¹

¦
p¹ "t#

"t¹−z¹#1
"t−z#% e−ia−0

p"t#
t−z

¦
p¹ "t#
t¹−z¹1 eia7 "30#

nj"Wk0j¦iWk1j#
1uk

1s
�

G
p"k¦0# 6$

U"t#
t−z

−
U¹ "t#
t¹−z¹% eia¦$

t−z

"t¹−z¹#1
UÞ"t#¦

0
t¹−z¹

U"t#% e−ia7 "31#

where\ similar to the derivation of "13#Ð"16#\ p"t# � t0"t#¦it1"t# is the complex traction and
U"t# � 1u0:1s¦i 1u1:1s is the complex displacement density on S[ Note that similar expressions
can also be obtained for the integrands involving Stk and 1Duk:1s[

Applying "30#Ð"31# to "19#\ the boundary integral equation for traction becomes

i
1

P"t9# �
0
1p gS¦G 6$

F"t#
t−t9

¦
FÞ"t#
t¹−t¹9% eia"t9#¦$

F"t#−P"t#
t¹−t¹9

−
t−t9

"t¹−t¹9#1
FÞ"t#% e−ia"t9#7 ds"t# "32#

where t9 � x9
0¦ix9

1 is a boundary point on S and P"t# is de_ned in "21#[ Similarly\ "11# can be
reduced to

i
1

Q"t9# �
0
1p gS¦G 6$

F"t#
t−t9

¦
FÞ"t#
t¹−t¹9% eia"t9#¦$

F"t#−P"t#
t¹−t¹9

−
t−t9

"t¹−t¹9#1
FÞ"t#% e−ia"t9#7 ds"t# "33#

where t9 is on G and Q"t9# is de_ned as]

Q"t9# � ðt0"x¦
9 #−t0"x−

9 #Ł¦iðt1"x¦
9 #−t1"x−

9 #Ł "34#

In view of the de_nition for H"t#\ we can further simplify our boundary integral equations "32#Ð
"33# for traction to the following uni_ed form]

pif"t9# � gS¦G 6
H"t#
t−t9

−
HÞ "t#
t¹−t¹9

e−1ia"t#¦e−1ia"t9#$
H"t#−q"t#

t¹−t¹9
¦

t−t9
"t¹−t¹9#1

HÞ "t# e−1ia"t#%7 dt "35#

where t9 is on S¦G and f"t9# is de_ned as

f"t9# � 6
q"t9# � sn"x9#¦isns"x9# for t on S

iQ"t9# e−ia"x9# � ðsn"x¦
9 #¦sn"x−

9 #Ł¦iðsns"x¦
9 #¦sns"x−

9 #Ł for t on G
"36#

This integral eqn "35# is much simpler than "19# and "11#\ and will be applied in later sections to
obtain the solutions for some hole and crack problems^ and the general numerical treatment of it
by using boundary element method is given by Wang and Chau "0886#[

3[ Complex representation of displacement

Although the ordinary integral formulation for displacement given in "0# can\ in general\ be
used to _nd the displacement _eld inside the body\ we provide here a much simpler form of
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displacement in terms of complex representation[ In particular\ we _rst recall the following two!
dimensional Hooke|s law]

1G"o00¦o11# � 0
1
"k−0#"s00¦s11#\ 1G"o11−o00¦1io01# � s11−s00¦1is01 "37#

which can be specialized from "02#\ and where oij "i\ j � 0\ 1# are the components of the two!
dimensional strain tensor[ Substitution of "24#Ð"25# into "37# leads to

1G"o00¦o11# �"k−0#ðF"z#¦FÞ"z#Ł\ 1G"o11−o00¦1io01# � 1ðz¹F?"z#¦C"z#Ł "38#

We _rst note that the rotation v can be expressed in terms of the analytic function F"z# as]

v2 �
0
1 0

1u1

1x0

−
1u0

1x11�
k¦0
3iG

ðF"z#−FÞ"z#Ł "49#

The second of "49# is obtained by substituting "0# into the _rst of "49#\ using "09#Ð"00# and "27#Ð
"28# and applying integration by parts[ Although the manipulation is somewhat lengthy\ the
procedure is quite straightforward and similar to that for "17#Ð"18#[

To _nd the expression for uj\ we can integrate "38#Ð"49# directly[ Our discussion here for
obtaining the displacement _eld follows\ however\ a somewhat simpler approach[ In particular\
we consider the following partial derivative of the complex displacement _eld u0¦iu1 at any point
z � x0¦ix1 with respect to s of an arbitrary set of local orthogonal curvilinear coordinate system
"n\ s#\ as shown in Fig[ 1]

1

1s
ð1G"u0¦iu1#Ł � 1G$cos a 0

1u0

1x0

¦i
1u1

1x01¦sin a 0
1u0

1x1

¦i
1u1

1x11% "40#

where a is the angle between the local coordinate s and the x0 axis[ With the following identities

1u1

1x0

� o01¦v2\
1u0

1x1

� o01−v2 "41#

"40# can be rewritten as

1

1s
ð1G"u0¦iu1#Ł � Gð"o00¦o11¦1iv2# eia−"o11−o00−1io01# e−iaŁ "42#

Substitution of "38# and "49# into "42# gives

1

1s
ð1G"u0¦iu1#Ł � ðkF"z#−FÞ"z#Ł eia−ðzFÞ?"z#¦CÞ"z#Ł e−ia "43#

We now introduce two new complex functions 8"z# and c"z# which satisfy

8?"z# � F"z#\ c?"z# � C"z#\ "44#

Thus\ substitution of "44# into "43# and simpli_cation of the result yield

1G"u0¦iu1# � k8"z#−z8¹ ?"z#−c¹ "z# "45#

and\ as expected\ these expressions agree with the formulae given by Muskhelishvili "0864#[ In
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view of the de_nitions given in "44# and the expressions for F"z# and C"z# given in "27# and "28#\
we obtain

8"z# � −
0

1pi gS¦G
H"t# ln"t−z# dt "46#

c"z# �
0

1pi gS¦G 6ðHÞ "t#−q¹ "t#Ł e−1ia"t# ln"t−z#−
t¹H"t#
t−z 7 dt "47#

Note that\ in principle\ the derivation of "45# can also be done directly from "0#^ however\ the
procedure is much more tedious than the one used here[

Although the appearance of both the stresses and displacements seems to be the same as those
given by Muskhelishvili "0864#\ our complex functions F"z#\ C"z#\ 8"z# and c"z# are actually
expressed in terms of boundary integrals for the surface S¦G of a multi!connected body[ Such a
form is especially suitable in considering bodies with multiple holes and cracks[ Therefore\ the
present formulation actually provides a link between the boundary integral method and the
Muskhelishvili|s "0864# formalism for problems involving cracks and holes[

4[ Physical meaning of the analytic function F"z# and H"t#

To see the physical meaning of F"z#\ we _rst rewrite "24#Ð"25# along the coordinate n−s shown
in Fig[ 1 as

sn¦ss � 1ðF"z#¦FÞ"z#Ł "48#

ss−sn¦isns � −1ðz¹F?"z#¦C"z#Ł e1ia "59#

Equations "48# and "59# can be combined to yield

sn¦isns � F"z#¦FÞ"z#¦ðzFÞ?"z#¦CÞ"z#Ł e−1ia "50#

The complex traction t0¦it1 on a unit arc element at a point z with an outward normal n �"sin a!
\ −cos a# becomes

t0¦it1 � −i"sn¦isns# eia � −iðF"z#¦FÞ"z#Ł eia−iðzFÞ?"z#¦CÞ"z#Ł e−ia "51#

where t0 and t1 are the traction components on S¦G along the x0 and x1 axes\ respectively[
Substitution of "51# into "43# gives the following physical interpretation of F"z#]

F"z# � i e−ia $
0

k¦0
"t0¦it1#−

1iG
k¦0

1

1s
"u0¦iu1#% "52#

In particular\ F"z# is a combination of complex traction and complex displacement gradient on an
arc around the point z[ When the complex function F"z# approaches the boundary\ it can be
related to the boundary complex function de_ned earlier as]

H"t# � F¦"t# for t on S

� F¦"t#−F−"t# for t on G
"53#
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where the superscript {¦| indicates the limit of F"z# obtained from the left of S¦G as z : t while
the superscript {−| indicates the limit obtained from the right[ This de_nition for the limiting
values of F"z# on the boundary bears a close resemblance with the notation used in Section 05 of
Muskhelishvili "0842#[

5[ Single!valued condition of displacements

We have shown in "45# that the solutions for displacements can be expressed in terms of two
complex functions 8"z# and c"z#\ which are in turn determined by boundary integrals "46#Ð"47#[
In general\ both "46#Ð"47# can be multi!valued and to ensure the single!valued condition of
displacements we consider the change of any complex quantity upon circulating the closed contours
around these holes or cracks as shown in Fig[ 3[ The discussion employed here is very similar to
those used by Section 24 of Muskhelishvili "0864#[

In particular\ when we consider an anti!clockwise loop Pk around the hole boundary Sk\ the
terms on the right hand side of "45# undergo the following changes in value]

ð8"z#ŁPk
� −gSk

H"t# dt\ ðz¹8?"z#ŁPk
� 9 "54#

ðc"z#ŁPk
� gSk

ðHÞ "t#−q¹ "t#Ł e1ia"t# dt "55#

since the change in ðln"t−z#Ł upon circulating Pk equals 1pi\ where the left!hand side of "54#Ð"55#

Fig[ 3[ A sketch showing the closed contours Lj\ Pk and P0h circulating around the crack Gj\ the hole Sk\ and the hole
with an edge crack S0¦Gh\ respectively[
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indicates the increase of the term inside the bracket[ Therefore\ the changes on the left hand side
of "45# becomes]

1Gðu0¦iu1ŁPk
� −"k¦0# gSk

H"t# dt¦i gSk

P"t# ds"t# "56#

The single!valued condition requires that "56# equals zero\ or\ we have

gSk

H"t# dt �
i

k¦0 gSk

P"t# ds"t# "57#

The same procedure can also be applied to the loops Lj and P0h which circuit around an isolated
crack Gj and the hole with edge crack S0¦Gh\ as shown in Fig[ 3[ The corresponding condition for
single!valuedness is again given by "57# except that Sk should be replaced by Gj and S0¦Gh\
respectively[ Physically\ the integral on the right hand side is related to the resultant forces exerted
on the corresponding boundary Sk[ That is\ we have

0
k¦0 gSk

P"t# ds"t# 0
Xk¦iYk

k¦0
"58#

0
k¦0 gG j

P"t# ds"t# 0
"X¦

j ¦X−
j #¦i"Y¦

j ¦Y−
j #

k¦0
"69#

on the hole and crack boundaries\ respectively[ In these expressions\ Xk¦iYk is the complex
resultant force on the boundary Sk and X2

j ¦iY2
j are the resultant forces on the crack surfaces

G2
j \ where {¦| and {−| denote the upper and lower crack surfaces\ respectively[

6[ Uniqueness of the solution H"t#

The issue on the uniqueness of H"t# for our boundary integral formulation will be discussed
brie~y here since similar discussion can be found in Section 23 of Muskhelishvili "0864#[ In
particular\ we want to examine whether the solution for which H"t# satis_es the compatibility eqn
"57# is unique[ As discussed by Muskhelishvili "0864#\ one can show that stress remains the same
even though F"z#\ 8"z# and c"z# are replaced by

F"z#¦Ci\ 8"z#¦Ciz¦g\ c"z#¦g? "60#

respectively[ Then\ it follows from "53# that the same solution for the traction boundary integral
equation "35# is obtained if H"t# is replaced by H"t#¦iC on Sk[ As shown by Muskhelishvili "0864#\
the constants C\ g\ and g? only relate to rigid body displacements^ therefore\ in case of displacement
boundary value problem or mixed boundary value problem H"t# is unique[
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7[ Formulae for multi!connected in_nite domain

In this section\ general formulae for the cases of in_nite domain containing both cracks and
holes are considered[ Such formulae will be useful when we consider the interaction between the
microcracks and micropores in brittle geomaterials\ such as rock and concrete[ In particular\ we
consider the special case that the outside boundary S9 becomes unbounded and that stresses
"s�

0 \ s�
1 and s�

01# are applied at in_nity\ as shown in Fig[ 4[ That is\ S9 can be replaced by a circle
such that t � Reiu on S9 with 9 ¾ u ¾ 1p and R : �[ The far _eld complex traction can be
expressed as]

q"t# � sr"R\ u#¦isru"R\ u# � 0
1
ðs�

0 ¦s�
1 −"s�

1 −s�
0 −1is�

01# e−1iuŁ "61#

The complex functions F"z# and C"z# de_ned by "27#Ð"28# can _rst be decomposed into two parts]

F"z# � F9"z#¦F�"z#\ C"z# � C9"z#¦C�"z#\ "62#

where

F9"z# �
0

1pi gS9

H"t# dt
t−z

\ C9"z# �
R1

1pi gS9
$
HÞ "t#−q¹ "t#

t1"t−z#
−

H"t#

t"t−z#1% dt "63#

F�"z# �
0

1pi gS¦G

H"t# dt
t−z

\ C�"z# � −
0

1pi gS¦G $
HÞ "t#−q¹ "t#

t−z
e−1ia"t#¦

t¹H"t#

"t−z#1% dt "64#

where S denotes the union of holes only "i[e[ excluding S9#[ Applying "50# to the left of "61#\ we
obtain

Fig[ 4[ An in_nite elastic body containing n cracks and m holes subject to far _eld stresses s�
0 \ s�

1 and s�
01[
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q"t9# � F¦"t9#¦FÞ¦"t9#−
R1

t19
ðt9FÞ?"t9#¦CÞ"t9#Ł¦ "65#

where t9 is on S9[ Substitution of "62#Ð"63# into "65# and using the following Plemelj formulae for
F"t9# "Muskhelishvili\ 0842#]

F¦"t9# �
0
1

H"t9#¦
0

1pi gS9

H"t# dt
t−t9

¦F�"t9# "66#

for t9 on S9\ we obtain the following integral equation for H"t#]

0
pi gS9

1H"t#−q"t#
t−t9

dt � q"t9#−1A−1 6F�"t9#¦FÞ�"t9#−
R1

t19
ðt9FÞ?�"t9#¦CÞ�"t9#Ł7 "67#

where A is de_ned as

A �
0

1pi gS9

HÞ "t# dt
t

� FÞ9"9# "68#

Recalling "53# and "62#\ and applying the Plemelj formula "66#\ we obtain

0
pi gS9

H"t# dt
t−t9

� H"t9#−1F�"t9# "79#

Finally\ substitution of "79# into "67# yields a solution for H"t9#]

H"t9# �
0
1

q"t9#¦
0

1pi gS9

q"t# dt
t−t9

−A¦6F�"t9#−FÞ�"t9#¦
R1

t19
ðt9FÞ?�"t9#¦CÞ�"t9#Ł7 "70#

Note that the _rst two terms on the right hand side can be simpli_ed by using the Plemelj formula[
More speci_cally\ we set

F"z# �
0

1pi gS9

q"t# dt
t−z

"71#

Substitution of "61# into "71# and applying some elementary formulae for the resultant Cauchy
integrals "e[g[ Section 69 of Muskhelishvili\ 0864# gives]

F¦"t9# �
0
1

q"t9#¦
0

1pi gS9

q"t# dt
t−t9

�
0
1
"s�

0 ¦s�
1 # "72#

Finally\ by virtue of "72#\ "70# is simpli_ed to

H"t9# �
0
1
"s�

0 ¦s�
1 #−A¦6F�"t9#−FÞ�"t9#¦

R1

t19
ðt9FÞ?�"t9#¦CÞ�"t9#Ł7 "73#

Substitution of "73# into "63# and noticing "61# and "64#\ then simpli_cation of the result by
applying the formulae for Cauchy integrals yields
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F9"z# �
0
1
"s�

0 ¦s�
1 #−A−

0
1pi gS¦G $

z

R1−zt¹
−

R1"t−z#

"R1−zt¹#1%HÞ "t# dt¹−
0

1pi gS¦G

t¹ðH"t#−q"t#Ł

R1−zt¹
dt

"74#

C9"z# �
0
1
"s�

1 −s�
0 ¦1is�

01#¦
0

1pi gS¦G

t¹HÞ "t#

R1−zt¹ $1−
t¹"t−z#

R1−zt¹
¦

1R1"R1−tt¹#

"R1−zt¹#1 % dt¹

¦
0

1pi gS¦G

t¹2 ðH"t#−q"t#Ł

"R1−zt¹#1
dt "75#

The derivation of these expressions is quite tedious although the procedure is straightforward[
Substitution of "74# into "68# yields the following form for A

A �
0
1
"s�

0 ¦s�
1 #−AÞ−

0

1piR1 gS¦G
tq¹ "t# dt¹−

0

1piR1 $gS¦G
t¹H"t# dt−gS¦G

tHÞ "t# dt¹% "76#

Alternatively\ we can write "76# as

A �
0
3
"s�

0 ¦s�
1 #−

0

3piR1 gS¦G
tq¹ "t# dt¹−

0

3piR1 $gS¦G
t¹H"t# dt−gS¦G

tHÞ "t# dt¹%−iC "77#

where C\ as remarked earlier\ is a real constant only related to the rigid rotation of the body[ Note
that "76# is valid if and only if the imaginary part of the third term on the right hand side is zero[
To see this\ we consider the resultant moment M of the boundary traction about the origin of the
coordinate system[ It follows from "21# and "39# that

M � Re $igS9¦S¦G
tp¹ "t# ds"t#%� −Re $gS9¦S¦G

tq¹ "t# dt¹%� −Re $gS¦G
tq¹ "t# dt¹%� 9 "78#

The last equality is due to the fact that no moment is applied at in_nity\and this shows the validity
of "76# or "77#[

Now\ considering the limit R : �\ we have "74#\ "75# and "77# being reduced to

F9"z# � 0
3
"s�

0 ¦s�
1 #¦iC\ C9"z# � 0

1
"s�

1 −s�
0 ¦1is�

01#\ A � 0
3
"s�

0 ¦s�
1 #−iC "89#

Then\ substitution of "89# and "64# into "62# yields

F"z# �
0
3
"s�

0 ¦s�
1 #¦iC¦

0
1pi gS¦G

H"t# dt
t−z

\ "80#

C"z# �
0
1
"s�

1 −s�
0 ¦1is�

01#−
0

1pi gS¦G $
HÞ "t#−q¹ "t#

t−z
e−1ia"t#¦

t¹H"t#

"t−z#1% dt "81#

where C can be related to the rotation at in_nity[ For in_nite body with cracks and holes subject
to far _eld loading\ the stresses and displacements in the body can be determined from "24#\ "25#
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and "45# together with "80# and "81#[ By substituting "80# and "81# into "65#\ we can show that
both force and moment equilibrium are satis_ed[

For this case of in_nite body subject to far _eld stress\ the traction boundary integral equation
similar to "35# becomes

pið f"t9#−`"t9#Ł � gS¦G 6
H"t#
t−t9

−
HÞ "t#
t¹−t¹9

e−1ia"t#

¦e−1ia"t9# $
H"t#−q"t#

t¹−t¹9
¦

t−t9
"t¹−t¹9#1

HÞ "t# e−1ia"t#%7 dt "82#

where f"t9# is given by "36# and

`"t9# � s�
0 ¦s�

1 ¦"s�
1 −s�

0 −1is�
01# e−1ia"t9# "83#

The complex functions and the boundary integral equation given in "27#Ð"28# and "35# are now
reduced to "80#Ð"82# for the problems of in_nite body subject to far _eld stresses s�

0 \ s�
1 and s�

01[

8[ Some analytical solutions using the present approach

To illustrate the validity and the analytic power of the present method\ we reconsider some
classical problems of stress concentration at circular hole and stress intensity factor at a circular!
arc crack[

8[0[ In_nite body with a circular hole

Consider the stress boundary problem of an in_nite elastic body with a circular hole with radius
R[ The domain V of the body is given by z � x0¦ix1 � r eiu with R ³ r ³ � and the boundary
S 0 S0 is de_ned by t � y0¦iy1 � R eiu\ with 9 ¾ u ¾ 1p for both z and t[ Suppose that the
boundary traction on the circular hole r � R is given by

q"t# � sn"t#¦isns"t# � N"u#¦iT"u# "84#

Since t � R eiu\ we have

t¹� R e−iu � R1:t\ e−1ia"t# � −e−1iu � −R1:t1 "85#

Thus\ the boundary integral eqn "82# and compatibility eqn "57# become

0
pi gS

1H"t#−q"t#
t−t9

dt¦
0

pit9 gS

ðH"t#−q"t#Ł dt � q"t9#−`"t9#−1A\ "86#

gS

H"t# dt �
0

k¦0 gS

q"t# dt "87#

where t9 � R exp"iu9# and
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A �
0

1pi gS

HÞ "t# dt
t

"88#

From "53# and "80#\ we obtain

0
pi gS

H"t# dt
t−t9

� H"t9#−
0
1
"s�

0 ¦s�
1 #−1iC "099#

In view of "87# and "099#\ the exact solution for "86# is obtained as

H"t9# �
0
1

q"t9#¦
0

1pi gS

q"t# dt
t−t9

¦
k

1pi"k¦0#t9 gS

q"t# dt−A¦
0
1
"s�

0 ¦s�
1 #¦1iC−

0
1

`"t9#

"090#

Substitution of "83# and "090# into "80# and "81#\ and simpli_cation of the results give

F"z# �
0

1pi gS

q"t# dt
t−z

¦
k

1pi"k¦0#z gS

q"t# dt¦
0
3
"s�

0 ¦s�
1 #¦iC¦

0
1
"s�

1 −s�
0 −1is�

01#
R1

z1

"091#

C"z# � −
R1

1pi gS $
q¹ "t#

t1"t−z#
¦

q"t#

t"t−z#1% dt¦
0
1
"s�

1 −s�
0 ¦1is�

01#−
R1

1pi"k¦0#z gS

q¹ "t# dt

t1

¦
R1

z1 $
0

1pi gS

q"t# dt
t

−"A¦AÞ#%¦
kR1

pi"k¦0#z2 gS

q"t# dt¦
2
1
"s�

1 −s�
0 −1is�

01#
R3

z3
"092#

where

AÞ �
0

1pi gS

H"t# dt
t

�
0

1pi gS

F¦"t#
dt
t

� −F"�# � −
0
3
"s�

0 ¦s�
1 #−iC "093#

The present solution\ of course\ agree with the classical solution\ such as Muskhelishvili|s "0864#
results[ To see illustrate this\ we consider the following special cases of "091# and "092#[

8[0[0[ Biaxial compression
When the hole boundary is free of traction and the only loading is the biaxial compression

applied at in_nity\ we have

s�
0 � −s9\ s�

1 � −bs9\ s�
01 � 9\ C � 9\ q"t# � 9[ "094#

Substitution of "093# and "094# into "091# and "092# yields

F"z# �
s9

3 $−"0¦b#¦1"0−b#
R1

z1 %\ C"z# �
s9

1 $"0−b#−"0¦b#
R1

z1
¦2"0−b#

R3

z3 % "095#
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Recalling the following identities for coordinate transformation]

sr¦su � s00¦s11\ su−sr¦1isru �"s11−s00¦1is01# e1iu "096#

and z � r exp"iu#\ we have the following stress components\ as expected\

sr � −
s9

1
"0¦b# 00−

R1

r1 1−
s9

1
"0−b# 00−

3R1

r1
¦

2R3

r3 1 cos 1u "097#

su � −
s9

1
"0¦b# 00¦

R1

r1 1¦
s9

1
"0−b# 00¦

2R3

r3 1 cos 1u "098#

sru �
s9

1
"0−b# 00¦

1R1

r1
−

2R3

r3 1 sin 1u "009#

where R ¾ r and 9 ¾ u ¾ 1p[ These expressions agree with those given in Section 45a of Mus!
khelishvili "0864#[

8[0[1[ Uniform internal pressure
If a uniform pressure of intensity p applied on the boundary of the circular hole\ we have

q"t# � −p\ s�
0 � s�

1 � s�
01 � 9\ C � 9 "000#

Then the complex stress functions become

F"z# � 9\ C"z# �
pR1

z1
"001#

and the corresponding stress components are

sr � −
pR1

r1
\ su �

pR1

r1
\ sru � 9 "002#

which\ of course\ agree with the classical solutions "e[g[ Timoshenko and Goodier\ 0840#[

8[0[2[ Concentrated force
Let the concentrated point force P is applied on the boundary of a circular hole in an in_nite

solid with zero far _eld stress\ as shown in Fig[ 5[ For this case\ we can set

q"t# � −Pd"Ru#\ s�
0 � s�

1 � s�
01 � 9\ C � 9 "003#

where d"j# is the Dirac delta function[ Complex functions F"z# and C"z# become

F"z# �
P

1Rp 0
R

R−z
¦

kR
"k¦0#z1\

C"z# � −
P

1Rp $
R

R−z
¦

R1

"R−z#1
¦

R
"k¦0#z

−
R1

z1
−

1kR2

"k¦0#z2% "004#
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Fig[ 5[ An in_nite elastic body containing a circular hole of radius R subject to a point force P on the hole|s boundary[

where R ¾ r and 9 ¾ u ¾ 1p[ Substitution of "004# into "24#Ð"25# and "096# leads to the following
hoop stress concentration on the boundary of the circular hole]

su"R\ u# �
P

1Rp 01¦
3k

k¦0
cos u1 "005#

which\ again\ agrees with the result given by Timoshenko and Goodier "0840#[

8[1[ A circular!arc crack in an in_nite body subject to uniaxial tension

This _nal example considers circular!arc crack in an in_nite elastic body under remote uniaxial
tension s in the x0 direction[ As shown in Fig[ 6\ the crack surface G is de_ned as t � y0¦iy1 � R eiu

Fig[ 6[ A circular!arc crack sustaining an angle of 1b in an in_nite body under far _eld tension s[
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with −b ³ u ³ b and R being the radius of the circular crack[ We have s2
n and s2

ns being zero on
the crack surface G and s�

01 � s�
1 � 9 and s�

0 � s[ By the de_nitions for "36# and "83#\ we obtain

q"t9# � 9\ f"t9# � 9\ `"t9# � s"0−e−1ia"t9## � s"0¦R1:t19# "006#

where t9 � R exp"iu9# and −b ³ u9 ³ b[ The complex functions F"z# and C"z# becomes

F"z# �
0

1pi gG

H"t# dt
t−z

¦
s

3
\ "007#

C"z# �
R1

1pi gG $
HÞ "t#

"t−z#t1
−

H"t#

"t−z#1t% dt−
s

1
"008#

The boundary integral equation "82# for traction becomes

0
pi gG

H"t# dt
t−t9

� −
0
1

`"t9#−A "019#

with again t9 being on G and A is de_ned by "88# with S being replaced by G[ The compatibility
condition "57# becomes

gG
H"t# dt � 9 "010#

Apply the Plemelj formulae "Muskhelishvili\ 0864# to "007#\ we obtain

F¦"t9#¦F−"t9# �
0
pi gG

H"t# dt
t−t9

¦
s

1
"011#

H"t9# � F¦"t9#−F−"t9# "012#

Substitution of "006# and "011# into "019#\ the singular integral equation is reduced to the following
non!homogeneous Hilbert problem "Muskhelishvili\ 0864#]

F¦"t9#¦F−"t9# � −A−
sR1

1t19
"013#

Following the procedure given by Muskhelishvili "0864#\ the following exact solution for "013#
satisfying "007# is obtained as]

F"z# �"C9¦C0z#X"z#−
X"z#
1pi gG 0A¦

sR1

1t1 1
dt

X¦"t#"t−z#
"014#

where

X"z# �"z−b#−0:1"z−a#−0:1\ b � R eib\ a � b¹ "015#

The constants C0 and C9 are to be determined and X¦"t# is the boundary value of X"z# on the
upper crack face "i[e[ the concave side of the crack which is closer to the origin as shown in Fig[
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6#[ As it is obvious that X"z# is multi!valued\ thus\ we take X"z# being the branch which for large
=z= has the following form]

X"z# �
0
z
¦

b¦a

1z1
¦O 0

0

z21�
0
z
¦

R cos b

z1
¦O 0

0

z21 "016#

0
X"z#

� z−
0
1
"b¦a#¦O 0

0
z1� z−R cos b¦O 0

0
z1 "017#

To solve "014#\ we _rst note the following formulae

0
1pi gL

dz

X"z#"z−z#
�

0
X"z#

−z¦R cos b "018#

0
1pi gL

dz

z1X"z#"z−z#
�

0

z1X"z#
−

0

z1X"9#
¦

X?"9#

zðX"9#Ł1
"029#

thus\ we have

0
pi gG 0A¦

sR1

1t1 1
dt

X¦"t#"t−z#
�

0
1pi gL 0A¦

sR1

1z1 1
dz

X"z#"z−z#

� A $
0

X"z#
−z¦R cos b%¦

sR1

1 $
0

z1X"z#
−

0

z1X"9#
¦

X?"9#

zðX"9#Ł1% "020#

The _rst of "020# relates to integral along G to that for the closed!loop L shown in Fig[ 7"a#[ The

Fig[ 7[ "a# A closed contour L enclosing the arc crack with end points a and b^ "b# the de_nitions of u\ u0 and u1 for the
position point z are de_ned[
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detailed argument being used is similar to that given in Section 009 of Muskhelishvili "0864#\ and
will not be elaborated here[ Finally\ substitution of "020# into "014# gives

F"z# �"C9¦C0z#X"z#−
A
1

ð0−X"z#"z−R cos b#Ł−
sR1

3 $
0

z1
−

X"z#
X"9# 0

0

z1
−

X?"9#
zX"9#1% "021#

By matching the values of F"z# at in_nity by given "007# and "021#\ respectively\ we get

C0 �
s

3
"022#

To evaluate C9\ we note the following results

gL
X"z# dz � −1pi\ gL

zX"z# dz � −1piR cos b\ gL

X"z# dz

z
� 1piX"9#\

gL

X"z# dz

z1
� 1piX?"9#\ gL

X"z# dz

z2
� piXý"9# "023#

Substitution of "012# and "021# into "010# leads to

gG
H"t# dt � gG

ðF¦"t#−F−"t#Ł dt � gL
F"z# dz � −1pi"C9¦C0R cos b# � 9 "024#

Therefore\ this gives C9 as

C9 � −
s

3
R cos b "025#

Utilizing the results in "021#Ð"025#\ we have the following expression for AÞ

AÞ �
0

1pi gG

H"t# dt
t

�
0

1pi gG
ðF¦"t#−F−"t#Ł

dt
t

�
0

1pi gL
F"z#

dz

z

� C9X"9#−C0−
A
1

ð0¦X"9#R cos bŁ−
sR1

3 $0
X?"9#
X"9# 1 1−

Xý"9#
1X"9#% "026#

Using the branch for X"z# de_ned by "016# and the notations given in Fig[ 7"b#\ we obtain

X"9# � −
0
R

\ X?"9# � −
cos b

R1
\ Xý"9# � −

0

R2
"2 cos1 b−0#\

X¦"t# � −=t−b=−0:1 =t−a=−0:1 e−iu:1 "027#

With these results\ "026# reduces further to
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A � −
s"2¦cos b#"0−cos b#

3"2−cos b#
"028#

By using "022#\ "025# and "027#\ the complex function F"z# can also be simpli_ed to

F"z# �
X"z#

1 $0A¦
s

11"z−R cos b#−
sR2

1z 0
0
z
−

cos b

R 1%−
A
1

−
sR1

3z1
"039#

Consequently\ substitution of "039# into "012# gives the following exact solution of the singular
integral equation "019# satisfying the single!valued condition "010#]

H"t# � X¦"t# $0A¦
s

11"t−R cos b#−
sR2

1t 0
0
t
−

cos b

R 1% "030#

where X¦"t# and A are given in "027# and "028#\ respectively[ In obtaining "030#\ we have also
used the fact that X¦"t#¦X−"t# � 9[

To obtain the stress intensity factors at the crack tips a and b shown in Fig[ 6\ we can _rst derive
the following expressions for KI and KII in terms of H"t# "Wang and Chau\ 0886#]

KI "a#−iKII "a# � −lim
t:a

z1p=t−a= = iH"t#\ KI "b#−iKII "b# � lim
t:b

z1p=t−b= = iH"t# "031#

The derivation of these formulae have been given in detail by Wang and Chau "0886# and\ thus\
will not be repeated here[ Substitution of "030# into "031# then using the results in "027# and "028#\
we _nally get

KI "b# � KI "a# �
0
1 $cos 0

2b

1 1¦
2¦cos1 b

1"2−cos b#
cos 0

b

11% szpR sin b "032#

KII "b# � −KII "a# �
0
1 $sin 0

2b

1 1¦
2¦cos1 b

1"2−cos b#
sin 0

b

11% szpR sin b "033#

which\ as expected\ agree with those given by formula 10[0 of Tada et al[ "0874# when the applied
stress s is given along the x0 axis[

Although the present formulation has only been applied to problems to which exact solutions
exist\ the present approach can also be applied to other problems of cracks and holes and provides
_rm basis for both analytic and numerical analyses[ A numerical analysis for the present boundary
integral formulation using a boundary element method is presented by Wang and Chau "0886#[

09[ Numerical results on two interacting collinear cracks

As discussed in the Introduction\ the full discussion on the implementation of the boundary
element method "BEM# for the present boundary integral formulation\ either "35# for _nite bodies
or "82# for in_nite bodies\ is out of the scope of the present study[ However\ to illustrate the BEM
based upon the present approach\ we will summarize brie~y the work by Wang and Chau "0886#
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and consider the interactions between two collinear cracks of equal size\ in either a _nite rectangular
plate or in an in_nite plate[

The numerical results to be presented here are obtained using the BEM discussed by Wang and
Chau "0886#[ In particular\ the boundary complex function H"t# is the only unknown of the BEM
formulation\ which is governed by the integral equation\ either "35# or "82#\ and the single!valued
condition "57#[ The discretization of H"t# uses the same linear interpolation for the boundary t\
except that at the crack tips a singular shape function is used for the crackÐtip!node[ One nice
feature of the proposed singular shape functions is that they allow the exact integration of the
singular integrals at the element level\ which are resulted from the overlapping of the source and
_eld points "Wang and Chau\ 0886#[ For each hole boundary\ an addition constant is proposed in
the interpolation such that the displacement compatibility condition "57# can be satis_ed exactly[
In addition\ the stress intensity factor at the crack tips can be calculated directly from "031# in
terms of H"t# and no data interpolation is needed[ The convergence of the BEM and the accuracy
in calculating the crackÐhole interactions have been demonstrated by considering the Gri.th crack
problem and the problem of a straight or kinked crack near to a circular hole\ respectively "Wang
and Chau\ 0886#[

For full details on the BEM formulation\ the reader is referred to Wang and Chau "0886#[ In
this section\ we will\ however\ present two particular problems of crackÐcrack interactions shown
in Figs 8 and 09[

09[0[ Two interactin` collinear cracks in a _nite rectan`ular plate

Our _rst numerical example investigates the interaction between two collinear cracks of length
1a in a _nite rectangular plate of dimension 1b×1h\ and the distance between the centres of these
cracks is 1c\ as shown in Fig[ 8[ Uniform tension _eld s is applied on the pair of boundaries of
length 1b[ And\ as shown in Fig[ 8\ the crack tip closer to the neighbouring crack or {the inner

Fig[ 8[ A _nite rectangular plate containing two equal!length collinear cracks under uniform tension s along a direction
perpendicular to the crack face[
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Fig[ 09[ An in_nite plate containing two equal!length collinear cracks under far _eld tension s along a direction
perpendicular to the crack face[

Fig[ 00[ Variations of the normalized SIFs with crack size a:b at the outer crack tip A of two!equal collinear cracks "see
Fig[ 8# in a _nite rectangular plate "b:h � 9[4# for various values of c:b[

crack tip| is labelled as crack tip B\ while the one farther away from the neighbouring crack or {the
outer crack tip| is labelled as crack tip A[

The BEM used are derived by satisfying the boundary integral eqn "35# and the compatibility
eqn "57#[ Figures 00 and 01 plot the normalized Mode I stress intensity factors "SIF# KI"A#:ðs"pa#0:1Ł
and KI"B#:ðs"pa#0:1Ł at the outer and inner crack tips vs the normalized crack length a:b for various
crack spacing "i[e[ c:b � 9[14\ 9[4 and 9[64#[ The shape factor h:b of the rectangular plate is _xed
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Fig[ 01[ Variations of the normalized SIFs with crack size a:b at the inner crack tip B of two!equal collinear cracks "see
Fig[ 8# in a _nite rectangular plate "b:h � 9[4# for various values of c:b[

at 9[4 for all of the calculations shown[ In general\ all stress intensity factors\ either at crack tip A
or B\ increase with the normalized crack length a:b[ The crack interactions are not very signi_cant
for both crack tips A and B when c:b � 9[4[ As discussed by Chandra et al[ "0884#\ the interaction
between the two cracks is more severe at the inner tip B when c:b � 9[14\ whilst the crack!free
edge interaction becomes more dominant at the outer tip A when c:b � 9[64[ Our numerical results
given in Figs 00 and 01 are virtually the same as those given in Fig[ 4 of Chandra et al[ "0884#\ in
which a di}erent BEM formulation was followed[ To allow comparisons with other studies\ the
normalized SIFs are also compiled in Table 0 vs a:b for various values c:b[ Therefore\ we conclude
that the BEM based upon the present formulation is as accurate as other numerical approaches[

09[1[ Two interactin` collinear cracks in an in_nite plate

Our second example is basically the same as the _rst one\ except that the dimension of the plate
is now unbounded\ as both b and h approaches in_nity "see Fig[ 09#[ The only controlling geometric
parameter in this problem is a:c[ The crack interactions between these collinear cracks can be
calculated by following two di}erent approaches] "0# applying the BEM for _nite plates as described
in Section 09[0 with a _xed\ _nite b:h and a very small a:b^ and "1# applying a BEM\ which is
formulated based upon the boundary integral equation "82# and the compatibility condition "57#[

Following the _rst approach\ approximations for the normalized SIFs at crack tips A and B can
be found and are summarized in Table 1 for various values of a:c " from 9[94 to 9[87# for the case
of b:h � 0 and a:b � 9[90 "i[e[ two small cracks in a large square plate#[ Alternatively\ the BEM
for an in_nite domain can be also used "i[e[ by employing "82# and "57# in the BEM formulation#\
and the results are summarized in Table 2 together with the numerical results obtained by Isida
"cited in p[ 084 of Murakami\ 0876#[ As expected\ the results of our two di}erent approaches agree
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Table 0
Variation of the normalized mode I stress intensity factors with crack size a:b at the outer and inner crack tips A\ B
"shown in Fig[ 8# of two equal!length collinear cracks in a _nite rectangular plate "h:b � 9[4# for various crack spacings
c:b

a:b

KI "A#:szpa KI "B#:szpa

c:b � 9[14 c:b � 9[4 c:b � 9[64 c:b � 9[14 c:b � 9[4 c:b � 9[64

9[914 0[9900 0[9990 0[9907 0[9902 0[9990 0[9904
9[949 0[9015 0[9976 0[9056 0[9034 0[9975 0[9039
9[964 0[9204 0[9129 0[9328 0[9272 0[9115 0[9232
9[099 0[9479 0[9317 0[9758 0[9642 0[9308 0[9515
9[014 0[9818 0[9565 0[0407 0[0187 0[9550 0[9881
9[049 0[0267 0[9862 0[1386 0[1099 0[9838 0[0347
9[064 0[0852 0[0202 0[3926 0[2214 0[0179 0[1943
9[199 0[1650 0[0582 0[5604 0[4283 0[0544 0[1759

Table 1
Variation of the normalized mode I stress intensity
factors with crack spacing a:c at the outer and
inner crack tips A\ B "shown in Fig[ 8# of two
equal!length collinear cracks in a large rectangular
plate "h:b � 0[9 and a:b � 9[90#

a:c KI "A#:szpa KI "B#:szpa

9[94 9[88727 9[88739
9[0 9[88829 9[88832
9[1 0[99163 0[99266
9[2 0[99717 0[90081
9[3 0[90486 0[91412
9[4 0[91594 0[93484
9[5 0[92891 0[96717
9[6 0[94483 0[02980
9[7 0[96803 0[11594
9[8 0[00436 0[33899
9[87 0[07072 1[22278

well with one another "comparing Tables 1 and 2#^ and\ more importantly\ they are virtually the
same as those obtained by Isida following a di}erent method\ with a maximum error of about
9[43) for all the data shown in Table 2[

Despite the details of our formulation for the BEM are given elsewhere "Wang and Chau\ 0886#\
the above two numerical examples indeed illustrate that our new boundary integral formulation
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Table 2
Variation of the normalized mode I stress intensity factors with crack spacing a:c at the outer and inner crack tips A\ B
"shown in Fig[ 09# of two equal!length collinear cracks in an in_nite plate

a:c Present BEM results Isidaa "Murakami\ 0876#

KI "A#:szpa KI "B#:szpa KI "A#:szpa KI "B#:szpa

9[94 9[88704 9[88705 0[99920 0[99921
9[0 9[88893 9[88805 0[99019 0[99021
9[1 0[99135 0[99238 0[99351 0[99455
9[2 0[99688 0[90053 0[90906 0[90272
9[3 0[90457 0[91383 0[90676 0[91606
9[4 0[91464 0[93454 0[91684 0[93685
9[5 0[92761 0[96686 0[93983 0[97939
9[6 0[94451 0[02946 0[94675 0[02215
9[7 0[96779 0[11455 0[97096 0[11783
9[8 0[00409 0[33740 0[00630 0[34276
9[87 0[07027 1[22299

a Reported in Murakami\ Y[\ 0876[ Stress Intensity Factors Handbook[ Vol[ 0[ Pergamon Press\ Oxford\ U[K[\ p[
084[

proposed here can provide a useful means to solve more complicated problems of crackÐcrack
interactions[

00[ Conclusions

A new formulation of boundary integral equations is proposed in this paper for a plane elastic
body containing an arbitrary number of cracks and holes[ The bodies can be either _nite or in_nite\
the cracks can either be an isolated crack or an edge crack emanating from a hole\ and the hole
can be of arbitrary shapes[ The formulation starts from Somigliana formula given by Cruse "0877#\
to which integration by parts is applied[ The resulting traction boundary integral is then rewritten
in terms of complex stress functions given by Muskhelishvili "0864#\ which are in the present
context expressed in terms of Cauchy integral[ The present formulation provides a formal link
between the complex variable formulation by Muskhelishvili and the boundary integral for!
mulation for bodies containing cracks and holes[ Although the present formulation is motivated
by its application to general numerical analysis\ such as the boundary element method "e[g[ Wang
and Chau\ 0886#\ our main focus here is on the application in obtaining exact analytic solutions[
In particular\ to verify our formulation we re!derive the stress concentration at a circular hole in
an in_nite body subject to] "i# far _eld biaxial compression^ "ii# uniform internal pressure^ and "iii#
a concentrated point force normal to the hole|s surface[ For crack problems\ the stress intensity
factor at the tip of a circular!arc under far _eld uniaxial tension is reconsidered^ and\ as expected\
the results agree with those given in the handbook of stress intensity factors "Tada et al[\ 0874#[

The numerical implementation of the boundary element method "BEM# using the present
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formulation is out of the scope of this study and is presented elsewhere "Wang and Chau\ 0886#[
As demonstrated by Wang and Chau "0886#\ its possible application in studying the interaction
between hole and crack is illustrated by considering a kinked crack close to a circular hole[ The
accuracy of the BEM based on the present formulation has been veri_ed when the crack is far
away from the hole "Wang and Chau\ 0886#[

To provide further numerical veri_cations of the present formulation\ the interaction problems
of two equal!length collinear cracks in a _nite rectangular plate and in an in_nite plate under
tension are solved by employing the BEM discussed by Wang and Chau "0886#[ As expected\ the
numerical results agree well with those by Chandra et al[ "0884# for the case of _nite plates and
with those by Isida "cited in Murakami\ 0876# for the case of in_nite plates[

Acknowledgements

The work was supported by the Research Grant Council "RGC# of the Hong Kong Special
Administrative Region CERG Project No[ HKP41:84E to The Hong Kong Polytechnic University
through K[T[C[ and by the National Science Foundation of the Gansu Province under Contract
No[ ZQ!84!994 to Lanzhou University through Y[B[W[

References

Aliabadi\ M[H[\ Brebbia\ C[A[\ "eds[#\ 0882[ Advances in Boundary Element Methods for Fracture Mechanics[ Elsevier\
London[

Aliabadi\ M[H[\ Cartwright\ D[J[\ Rooke\ D[P[\ 0878[ Fracture!mechanics weightÐfunctions by the removal of singular
_elds using boundary element analysis[ Int[ J[ Fract[ 39\ 160Ð173[

Ang\ W[T[\ 0875[ A boundary integral solution for the problem of multiple interacting cracks in an elastic material[ Int[
J[ Fract[ 20\ 148Ð169[

Ang\ W[T[\ 0876[ A boundary integral equation for deformations of an elastic body with an arc crack[ Quart[ Appl[
Math[ 34\ 020Ð028[

Ang\ W[T[\ 0889[ A _nite!part boundary integral formulation of an elastic crack problem[ J[ Sci[ Soc[ Thailand 05\ 030Ð
040[

Ang\ W[T[\ Clements\ D[L[\ 0875[ A boundary element method for determining the e}ect of holes on the stress
distribution around a crack[ Int[ J[ Numer[ Meth[ Eng[ 12\ 0616Ð0626[

Ang\ W[T[\ Clements\ D[L[\ 0876[ A boundary integral equation method for the solution of a class of crack problems[
J[ Elast[ 06\ 8Ð10[

Blanford\ G[E[\ Ingra}ea\ A[R[\ Liggett\ J[A[\ 0880[ Two!dimensional stress intensity factor computations using the
boundary element method[ Int[ J[ Numer[ Meth[ Eng[ 06\ 276Ð393[

Brebbia\ C[A[\ 0873[ The Boundary Element Method for Engineers[ Pentech Press\ London[
Brebbia\ C[A[\ Dominguez\ J[\ 0881[ Boundary Elements An Introductory Course\ 1nd ed[ McGraw!Hill\ New York[
Brebbia\ C[A[\ Telles\ J[C[F[\ Wrobel\ L[C[\ 0873[ Boundary Element Techniques] Theory and Applications in Engin!

eering[ Springer!Verlag\ Berlin[
Bui\ H[D[\ 0866[ An integral equations method for solving the problem of a plane crack of arbitrary shape[ J[ Mech[

Phys[ Solids 14\ 18Ð28[
Chandra\ A[\ Huang\ Y[\ Wei\ X[\ Hu\ K[X[\ 0884[ A hybrid micro!macro BEM formulation for micro!crack clusters in

elastic components[ Int[ J[ Num[ Meth[ Eng[\ 27\ 0104Ð0125[
Chang\ C[\ Mear\ M[E[\ 0884[ A boundary element method for two dimensional linear elastic fracture analysis[ Int[ J[

Fract[ 63\ 108Ð140[



K[T[ Chau\ Y[B[ Wan` : International Journal of Solids and Structures 25 "0888# 1930Ð1963 1962

Chen\ W[H[\ Chen\ T[C[\ 0884[ An e.cient dual boundary element technique for a two!dimensional fracture problem
with multiple cracks[ Int[ J[ Numer[ Meth[ Eng[ 27\ 0628Ð0645[

Chen\ Y[Z[\ Hasebe\ N[\ 0885[ Hypersingular integral equation for a curved crack problem of circular region in antiplane
elasticity[ J[ Appl[ Mech[ ASME 52\ 734Ð738[

Crouch\ S[L[\ 0865[ Solution of plane elasticity problems by the displacement discontinuity method[ Int[ J[ Numer[
Meth[ Eng[ 09\ 290Ð232[

Crouch\ S[L[\Star_eld\ A[M[\ 0872[ Boundary Element Methods in Solid Mechanics] With Applications in Rock
Mechanics and Geological Engineering[ Allen and Unwin\ London[

Cruse\ T[A[\ 0858[ Numerical solutions in three dimensional elastostatics[ Int[ J[ Solids Structures 4\ 0148Ð0163[
Cruse\ T[A[\ 0877[ Boundary Element Analysis in Computational Fracture Mechanics[ Kluwer Academic\ Dordrecht[
Danson\ D[\ 0872[ Linear isotropic elasticity with body forces[ In Brebbia\ C[A[ "Ed[#\ Progress in Boundary Element

Methods\ Vol[ 1\ Chap[ 3\ pp[ 090Ð024[
Hong\ H[!K[\ Chen\ J[!T[\ 0877[ Derivations of integral equations of elasticity[ J[ Eng[ Mech[ ASCE 003\ 0917Ð0933[
Ioakimidis\ N[I[\ 0871[ Application of _nite!part integral to the singular integral equations of crack problems in plane

and three!dimensional elasticity[ Acta Mechanica 34\ 20Ð36[
Ioakimidis\ N[I[\ 0872[ A new singular integral equation for the classical crack problem in plane and antiplane elasticity[

Int[ J[ Fract[ 10\ 004Ð011[
Ioakimidis\ N[I[\ 0874[ Exact expression for a two!dimensional _nite!part integral appearing during the numerical

solution of crack problems in three!dimensional elasticity[ Comm[ Appl[ Numer[ Meth[ 0\ 072Ð078[
Jiang\ Z[Q[\ Chandra\ A[\ Huang\ Y[\ 0885[ A hybrid micro!macro BEM with micro!scale inclusion!crack interactions[

Int[ J[ Solids Structures 22\ 1298Ð1218[
Kellogg\ O[D[\ 0842[ Foundations of Potential Theory[ Dover\ New York[
Kinoshita\ N[\ Mura\ T[\ 0845[ On the boundary value problem of elasticity[ Research Report\ Faculty of Eng[ Meiji

University\ No[ 7\ pp[ 0Ð6[
Kupradze\ V[C[\ 0842[ Boundary value problems of steady!state elastodynamic problems[ Uspekhi Mat[ Nuak 7\ 10Ð63[
Kupradze\ V[C[\ 0854[ Potential Methods in Theory of Elasticity[ Israel Program Sci[ Trans[\ Jerusalem[
Lavit\ I[M[\ 0883[ Boundary integral equation for a curvilinear boundary crack[ J[ Appl[ Math[ Mech[ "translation of

Prikl[ Mat[ Mekh[# 47\ 050Ð069[
Lacht\ J[C[\ Watson\ J[O[\ 0865[ E}ective numerical treatment of boundary integral equations] a formulation for three!

dimensional elastostatics[ Int[ J[ Numer[ Meth[ Eng[ 09\ 880Ð0994[
Lee\ J[C[\ Keer\ L[M[\ 0875[ Study of a three!dimensional crack terminating at an interface[ J[ Appl[ Mech[ ASME 42\

200Ð205[
Martin\ P[A[\ Rizzo\ F[J[\ 0878[ On boundary integral equations for crack problems[ Proc[ R[ Soc[ Lond[ A 310\ 230Ð

244[
Mikhlin\ S[G[\ 0854[ Multidimensional Singular Integral and Equations[ Pergamon Press\ New York[
Murakami\ Y[\ 0876[ Stress Intensity Factors Handbook\ Vol[ 0[ Pergamon Press\ Oxford\ U[K[
Muskhelishvili\ N[I[\ 0842[ Singular Integral Equations\ 1nd ed[ "translated by Radok\ J[R[M[#[ Noordho} International

Publishing\ Leyden[
Muskhelishvili\ N[I[\ 0864[ Some Basic Problems of the Mathematical Theory of Elasticity\ 3th ed "translated by Radok\

J[R[M[#[ Noordho} International Publishing\ Leyden[
Nishimura\ N[\ Kobayashi\ S[\ 0877[ An improved boundary integral equation method for crack problems[ In] Cruse\

T[A[ "Ed[#\ Advanced Boundary Element Method[ Springer!Verlag\ Berlin[
Pan\ E[\ Amadei\ B[\ 0885[ Fracture mechanics analysis of cracked 1!D anisotropic media with a new formulation of

the boundary element method[ Int[ J[ Fract[ 66\ 050Ð063[
Portela\ A[\ Aliabadi\ M[H[\ Rooke\ D[P[\ 0881[ The dual boundary element method] e}ective implementation for crack

problems[ Int[ J[ Numer[ Meth[ Eng[ 22\ 0158Ð0176[
Rizzo\ F[J[\ 0856[ An integral equation approach to boundary value problems of classical elastostatics[ Quart[ Appl[

Math[ 14\ 72Ð80[
Saez\ A[\ Gallego\ R[\ Dominguez\ J[\ 0884[ Hypersingular quarter!point boundary elements for crack problems[ Int[ J[

Numer[ Meth[ Eng[ 27\ 0570Ð0690[
Shou\ K[J[\ Crouch\ S[L[\ 0884[ A higher order displacement discontinuity method for analysis of crack problems[ Int[

J[ Rock Mech[ Min[ Sci[ and Geomech[ Abstr[ 21\ 38Ð44[



K[T[ Chau\ Y[B[ Wan` : International Journal of Solids and Structures 25 "0888# 1930Ð19631963

Sladek\ V[\ Sladek\ J[\ 0871[ Three!dimensional crack analysis for an anisotropic body[ Appl[ Math[ Modelling 5\ 263Ð
279[

Sladek\ V[\ Sladek\ J[\ 0889[ On nonsingular boundary integral equations for crack problems[ Mech[ Comm[ 06 "4#\
170Ð178[

Stephan\ E[P[\ 0875[ A boundary integral equation method for three!dimensional crack problems in elasticity[ Math[
Meth[ Appl[ Sci[ 7\ 598Ð512[

Snyder\ M[D[\ Cruse\ T[A[\ 0864[ Boundary!integral equation analysis of cracked anisotropic plates[ Int[ J[ Fract[ 00\
204Ð217[

Tada\ H[\ Paris\ P[C[\ Irwin\ G[R[\ 0874[ The Stress Analysis of Cracks Handbook\ 1nd ed[ Paris Production Incor!
porated\ St[ Louis[

Takakuda\ K[\ Koizumi\ T[\ Shibuya\ T[\ 0874[ On integral equation methods for crack problems[ Bull[ JSME 17\ 106Ð
113[

Tang\ R[\ Wang\ Y[B[\ 0875[ On the problem of crack system with an elliptic hole[ Acta Mechanica Sinica 1\ 36Ð46[
Timoshenko\ S[P[\ Goodier\ J[N[\ 0840[ Theory of Elasticity\ 2rd ed[ McGraw!Hill\ New York[
Wang\ Y[B[\ 0889[ A boundary integral equation method for the Gri.th crack problem under asymmetric loadings[ J[

Lanzhou University "Natural Science# 15\ 24Ð28 "in Chinese#[
Wang\ Y[B[\ 0882[ A new boundary integral equation method of three!dimensional crack analysis[ Int[ J[ Fract[ 52\

206Ð217[
Wang\ Y[B[\ 0884[ A boundary integral equation method of plane problems of interface cracks in elastic bimaterials[ J[

Lanzhou University "Natural Science# 20\ 03Ð10 "in Chinese#[
Wang\ Y[B[\ Chau\ K[T[\ 0886[ A new boundary element method for plane elastic problems involving cracks and holes[

Int[ J[ Fract[\ 76\ 0Ð19[
Wang\ Y[B[\ Chen\ W[J[\ 0882[ Interaction of two equal coplanar square cracks in three!dimensional elasticity[ Int[ J[

Solids Structures 29\ 2204Ð2219[
Wang\ Y[B[\ Tang\ R[\ 0877[ The e}ect of a square hole on a crack tip|s stress intensity factor[ Acta Mechanica Solida

Sinica 8\ 159Ð153 "in Chinese#[
Weaver\ J[\ 0866[ Three!dimensional crack analysis[ Int[ J[ Solids Structures 02\ 210Ð229[
Wendland\ W[L[\ Stephan\ E[P[\ 0889[ A hypersingular boundary integral method for two!dimensional screen and crack

problems[ Arch[ Rational Mech[ Anal[ 001\ 252Ð289[
Zang\ W[L[\ 0889[ On modelling of piece!wise smooth cracks in two!dimensional _nite bodies[ Int[ J[ Fract[ 35\ 30Ð44[
Zang\ W[\ Gudmundson\ P[\ 0877[ A boundary integral method for internal piece!wise smooth crack problems[ Int[ J[

Fract[ 27\ 164Ð183[


